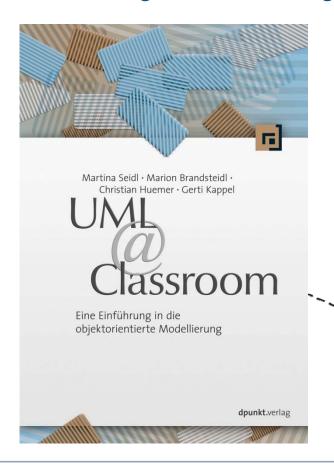


Vienna University of Technology

Objektorientierte Modellierung

Sequenzdiagramm


Business Informatics Group

Institute of Software Technology and Interactive Systems Vienna University of Technology Favoritenstraße 9-11/188-3, 1040 Vienna, Austria

phone: +43 (1) 58801-18804 (secretary), fax: +43 (1) 58801-18896 office@big.tuwien.ac.at, www.big.tuwien.ac.at

Literatur

Die Vorlesung basiert auf folgendem Buch:

UML @ Classroom: Eine Einführung in die objektorientierte Modellierung

Martina Seidl, Marion Brandsteidl, Christian Huemer und Gerti Kappel

dpunkt.verlag

Juli 2012

ISBN 3898647765

- Anwendungsfalldiagramm
- Strukturmodellierung
- Zustandsdiagramm
- Sequenzdiagramm
- Aktivitätsdiagramm

Inhalt

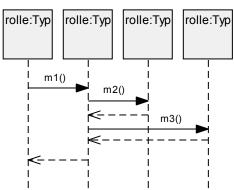
- Interaktionen und Nachrichten
- Überblick Interaktionsdiagramme
- Basiselemente des Sequenzdiagramms
 - Diagrammrahmen
 - Lebenslinie
 - Nachrichten
 - Parameter, Lokale Attribute
- Zeiteinschränkungen und Zustandsinvarianten
- Kombinierte Fragmente
 - Verzweigungen und Schleifen
 - Nebenläufigkeit und Ordnung
 - Filterungen und Zusicherungen

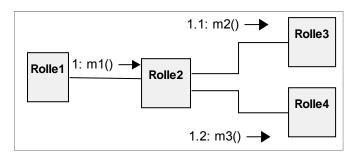
Interaktionen und Nachrichten

- Interaktion
 - Zusammenspiel mehrerer Kommunikationspartner
 - Nachrichten- und Datenaustausch
- Interaktionen durch
 - Signale
 - Operationsaufrufe
 - Aufruf einer Operation einer Klasse
 - Antwort: Ergebnis der aufgerufenen Operation
- Steuerung der Interaktionen durch
 - Bedingungen
 - Zeitereignisse

Interaktionsdiagramme

- Zeigen wie Nachrichten zwischen verschiedenen Interaktionspartnern in einem bestimmten Kontext ausgetauscht werden
- Beschreibung von Kommunikationssituationen durch:
 - Kommunikationspartner und deren Lebenslinien
 - Interaktionen
 - Nachrichten
 - Mittel zur Flusskontrolle
- Unterschiedliche Anforderungen und Betonung unterschiedlicher Aspekte
 - ⇒ 4 verschiedene Typen von Interaktionsdiagrammen

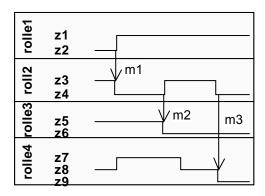


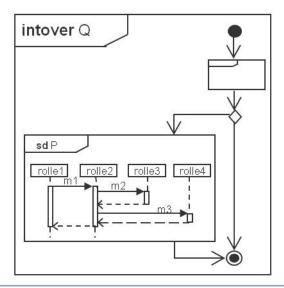


Interaktionsdiagramme – Arten (1/2)

 Die 4 Arten von Interaktionsdiagrammen sind für einfache Interaktionen semantisch äquivalent

- Betonung unterschiedlicher Aspekte
 - Sequenzdiagramm zeigt den zeitlichen und logischen Nachrichtenfluss
 - Zeit ist eigene Dimension
 - Kommunikationsdiagramm ist »strukturell« orientiert
 - Zeigt die Beziehungen zwischen Interaktionspartnern – Kontextaspekt
 - Reihenfolge von Nachrichten nur über Dezimalklassifikation ausgedrückt
 - Zeit ist keine eigene Dimension

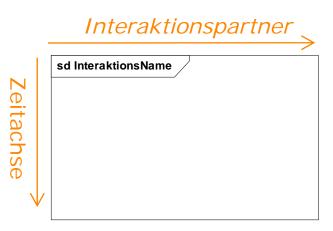


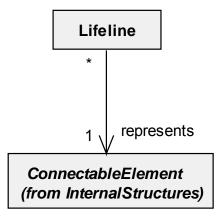


Interaktionsdiagramme – Arten (2/2)

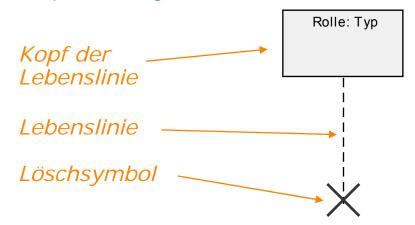
- Zeitdiagramm zeigt Zustandsänderungen der Interaktionspartner aufgrund von Zeitereignissen
 - Vertikale Dimension repräsentiert Interaktionspartner und ihre möglichen Zustände
 - Horizontale Dimension repräsentiert die Zeitachse
- Interaktionsübersichtsdiagramm zeigt das Zusammenspiel von verschiedenen Interaktionen
 - Visualisiert in welcher Reihenfolge und unter welchen Bedingungen Interaktionsabläufe stattfinden

Einsatzbereiche


- Modellierung der Interaktionen eines Systems mit seiner Umwelt (Systemgrenzen festlegen, System als Black-Box)
- Modellierung der Realisierung eines Anwendungsfalls
- Modellierung des Zusammenspiels der internen Struktur einer Klasse, Komponente oder Kollaboration
- Modellierung der Spezifikation von Schnittstellen zwischen
 Systemteilen (Zusammenspiel angebotene/benutzte Schnittstelle)
- Modellierung der Operationen einer Klasse


Sequenzdiagramm

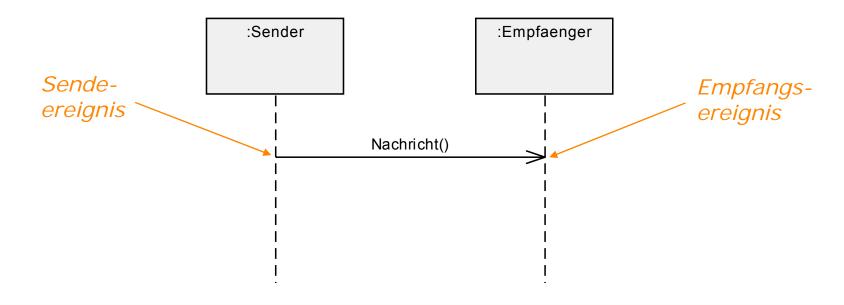
- Darstellung von Interaktionen in 2 Dimensionen:
 - "horizontal": Interaktionspartner in Form von Rollen Reihenfolge der Partner wird für eine möglichst übersichtliche Darstellung gewählt
 - "vertikal": Zeitachse
 Darstellung des zeitlichen Ablaufs der Kommunikation
- wichtigste Notationselemente:
 - Lebenslinien: Kommunikationspartner
 - Nachrichten: Pfeile



Lebenslinie

- Eine Lebenslinie beschreibt genau einen Interaktionspartner
- Als Interaktionspartner k\u00f6nnen alle Rollen des Kontext-Classifiers auftreten
 - Rollen sind vom Typ ConnectableElement (z.B. Klassen, Attribute oder Ports)
- Metamodell

Notation im Sequenzdiagramm

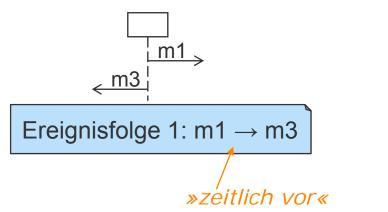


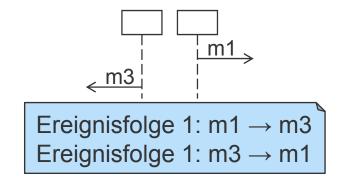
Typ- vs. Instanzebene

- Modellierung des Nachrichtenaustauschs zwischen Rollen und damit prinzipiell auf Rollenebene
 - Kontext der Interaktion durch strukturierte Classifier festgelegt = Kontext-Classifier
 - Die Rollen der Classifier stellen die Interaktionspartner dar
 - Tatsächliche Interaktion findet selbstverständlich auf Instanzebene zwischen Objekten statt
- Modellierung auf Instanzebene möglich, um eine Abfolge von Nachrichten zwischen konkreten Objekten darzustellen = Trace

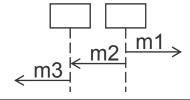
Lebenslinie: Ereignisspezifikation (1/2)

- Interaktionen werden als Folge von Ereignisspezifikationen auf Lebenslinien betrachtet
- Beispiel für Ereignisspezifikationen
 - Senden und Empfangen von Nachrichten auf verschiedenen Lebenslinien oder der gleichen Lebenslinie

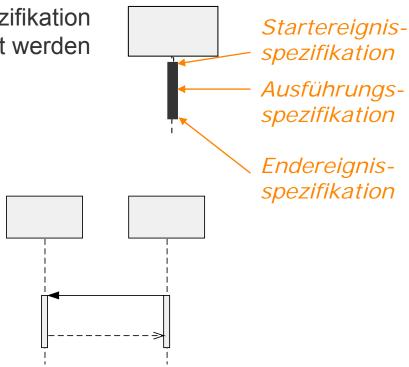

Lebenslinie: Ereignisspezifikation (2/2)


- Reihenfolge von Ereignisspezifikationen
 - Vertikale Zeitachse bestimmt nur die Ordnung der Ereigniseintritte pro Lebenslinie
 - Jedoch nicht die Reihenfolge von Ereigniseintritten auf verschiedenen Lebenslinien
 - Erst durch Nachrichten zwischen Lebenslinien wird eine Ordnung über Lebenslinien hinweg erzwungen

Lebenslinie: Reihenfolge von Ereigniseintritten

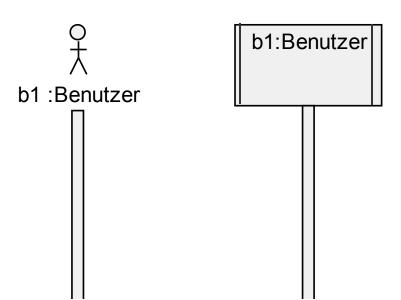

... auf einer Lebenslinie

... auf verschiedenen Lebenslinien


... auf verschiedenen Lebenslinien, verbunden durch Nachrichtenaustausch

Ereignisfolge 1: $m1 \rightarrow m2 \rightarrow m3$

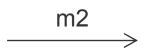
Lebenslinie: Ausführungsspezifikation


- Die Ausführung einer Aktivität/Operation wird durch zwei Ereignisspezifikationen (Start und Ende) auf der gleichen Lebenslinie definiert
 - Diese sogenannte Ausführungsspezifikation kann durch einen Balken dargestellt werden
- Ausführungsarten
 - Direkt
 - Interaktionspartner führt Verhalten selbst aus
 - Indirekt
 - Ausführung wird an andere Interaktionspartner delegiert

Lebenslinie: Aktives Objekt

- Aktive Objekte verfügen über eigenen Kontrollfluss (Prozess oder Thread)
- Können unabhängig von anderen Objekten operieren
- Notation
 - Kopf der Lebenslinie wird links und rechts mit doppeltem Rand versehen
 - durchgehender Balken über gesamte Lebenslinie

Nachricht


Arten der Kommunikation

Synchrone Kommunikation

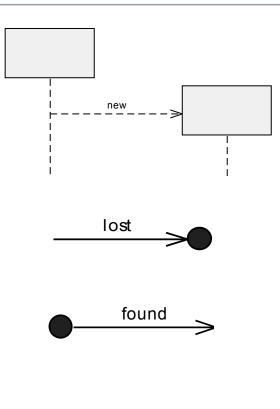
 Der Sender wartet bis zur Beendigung der Interaktion, die durch die Nachricht ausgelöst wurde

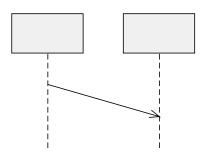
Asynchrone Kommunikation

- Die Nachricht wird als Signal betrachtet
- Der Sender wartet nicht auf das Ende der Interaktion

Antwortnachricht (optional)

att: Name eines Attributs, dem der Rückgabewert zugewiesen werden soll


m1: Name der Nachricht, auf die geantwortet wird


wert: Rückgabewert

Nachricht: Spezielle Nachrichtenarten

- Objekterzeugung
 - Ermöglicht, einen Interaktionspartner erst im Laufe der Interaktion zu erzeugen
- Verlorene Nachricht
 - Senden einer Nachricht an unbekannten oder nicht relevanten Interaktionspartner
- Gefundene Nachricht
 - Empfang einer Nachricht von einem unbekannten oder nicht relevanten Interaktionspartner
- Zeitkonsumierende Übertragung

Basiskonzepte – Parameter, lokale Attribute

- Darstellung von Parametern und lokalen Attributen
- Beispiel: Modellierung der Operation func:

```
void func (int par1, int par2)
{
  int x = 0;
  String y = "Test";
  ...
}
```

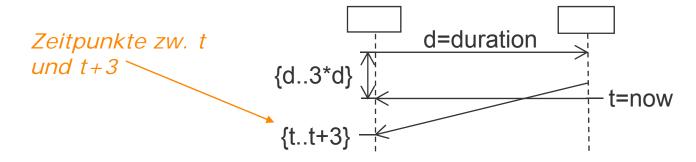
Parameter

Variante 1:

lokale Attribute

```
sd func (int par1, int par2)

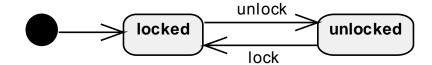
x:int = 0

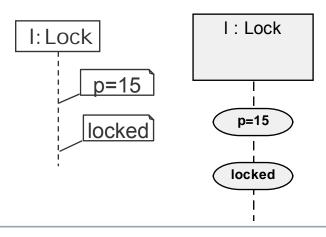

y:String = "Test"
```

Variante 2:

```
x:int = 0
y:String = "Test" sd func (int par1, int par2)
```

Zeiteinschränkungen

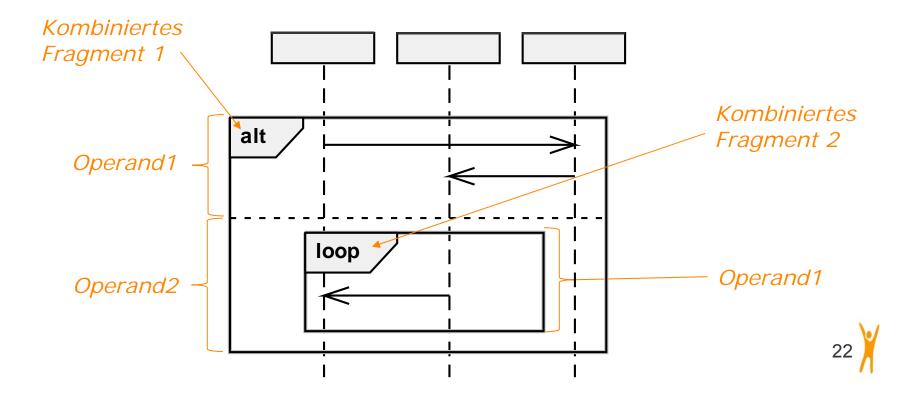

- Arten
 - Zeitpunkt (time constraint)
 - Bezieht sich auf einzelne Ereignisspezifikationen relativ: z.B. after(5sec); absolut: z.B. at(12.00)
 - Zeitdauer (duration constraint)
 - Bezieht sich auf Zeitintervall zwischen zwei Ereigniseintritten z.B. {12.00 .. 13.00}
- Vordefinierte Aktionen zur Zeitberechnung
 - **now**: Berechnung der aktuellen Zeit
 - duration: Berechnung einer Zeitdauer
 - Erhaltene Werte müssen Variablen zugewiesen werden
 - Variablen können in Zeitausdrücken verwendet werden



Zustandsinvariante

- Zusicherung, dass eine bestimmte Bedingung zu einem bestimmten Zeitpunkt erfüllt ist
- Bezieht sich immer auf eine bestimmte Lebenslinie
- Wird vor Eintritt des darauf folgenden Ereignisses ausgewertet
- Falls Zustandsinvariante nicht erfüllt ist Fehler
- Notationsvarianten Beispiel: Schloss (Lock)

Zustände, die ein Schloss annehmen kann:

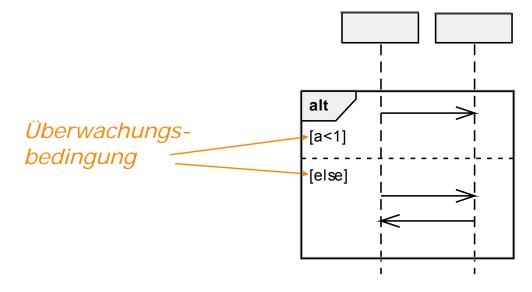


Kombinierte Fragmente

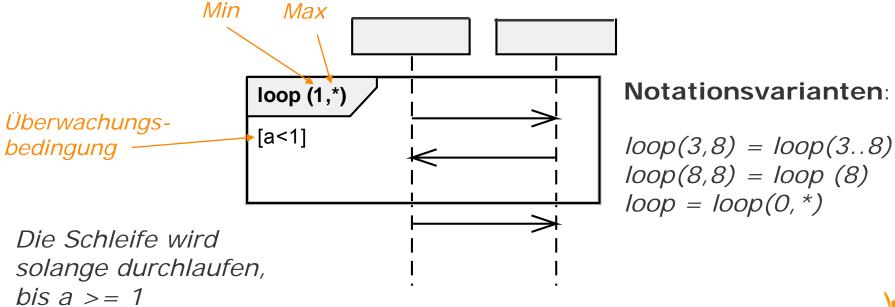
- Modellierung von Kontrollstrukturen
- Bestandteile: Operator und Operanden
- Operator
 - Definiert Art des kombinierten Fragments
 - 12 vordefinierte Operatoren
- Operand
 - Ein Operator enthält 1 oder mehrere Operanden, je nach Operatorart
 - Kann Interaktionen, kombinierte Fragmente (Schachtelung!) und Referenzen auf Sequenzdiagramme umfassen

Kombinierte Fragmente – Notation

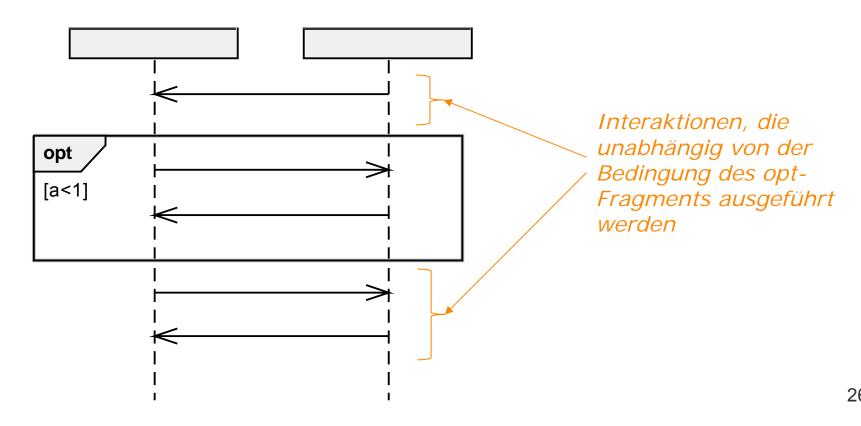
- Kombiniertes Fragment wird wie Sequenzdiagramm mit Rahmen dargestellt
- Art des Fragments wird durch Operator im Pentagon festgelegt
 - default: seq
- Operanden werden durch gestrichelte Linien voneinander getrennt


Kombinierte Fragmente – Operatorarten

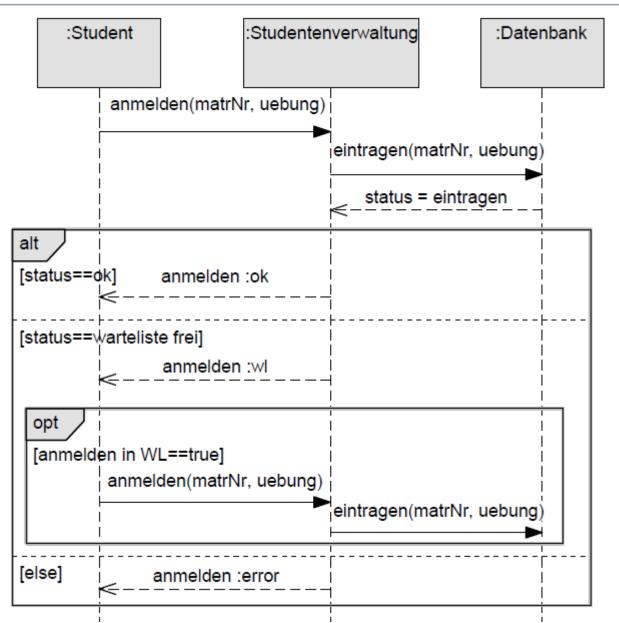
	Operator	Zweck
Verzweigungen und Schleifen	alt	Alternative Interaktionen
	opt	Optionale Interaktionen
	break	Ausnahme Interaktionen
	loop	Iterative Interaktionen
Nebenläufigkeit und Ordnung	seq	Sequentielle Interaktionen mit schwacher Ordnung (Default-Operator)
	strict	Sequentielle Interaktionen mit strenger Ordnung
	par	Nebenläufige Interaktionen
	critical	Atomare Interaktionen
Filterungen und Zusicherungen	ignore	Irrelevante Interaktionen
	consider	Relevante Interaktionen
	assert	Zugesicherte Interaktionen
	neg	Ungültige Interaktionen


Verzweigungen und Schleifen: alt-Operator

- Darstellung von zwei oder mehreren alternativen Interaktionsabläufen (mind. 2)
- Zur Laufzeit wird maximal ein Operand ausgeführt
- Auswahl eines Operanden anhand von Überwachungsbedingungen
 - Boolescher Ausdruck in eckigen Klammern
 - Vordefinierte else-Bedingung: Operand wird ausgeführt, falls die Bedingungen aller anderen Operanden nicht erfüllt sind
 - default: true

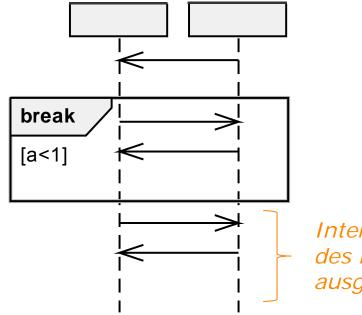

Verzweigungen u. Schleifen: loop-Operator

- Darstellung einer Schleife über einen bestimmten Interaktionsablauf
 - Fragment enthält nur einen Operanden
 - Ausführungshäufigkeit wird durch Zähler mit Unter- und Obergrenze dargestellt
 - Optional: Überwachungsbedingung; wird bei jedem Durchlauf überprüft, sobald die minimale Anzahl an Durchläufen stattgefunden hat



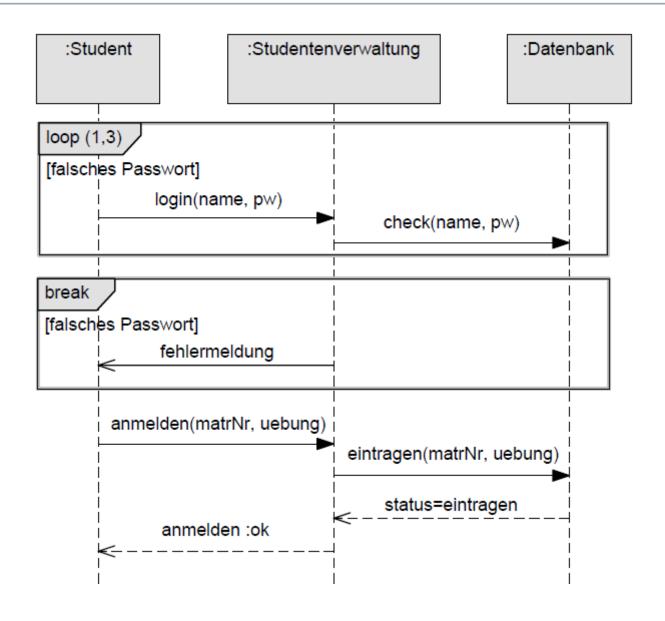
Verzweigungen u. Schleifen: opt-Operator

- Optionale Interaktionen
- Überwachungsbedingung steuert Durchlauf der Interaktionen
- Fragment wird nur aktiv, wenn Bedingung erfüllt ist
 - Modellierung von "wenn ..., dann ..."

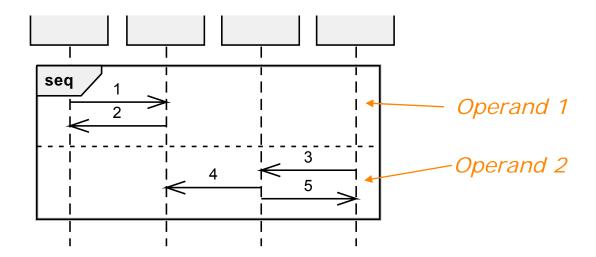


Opt-Operator - Beispiel

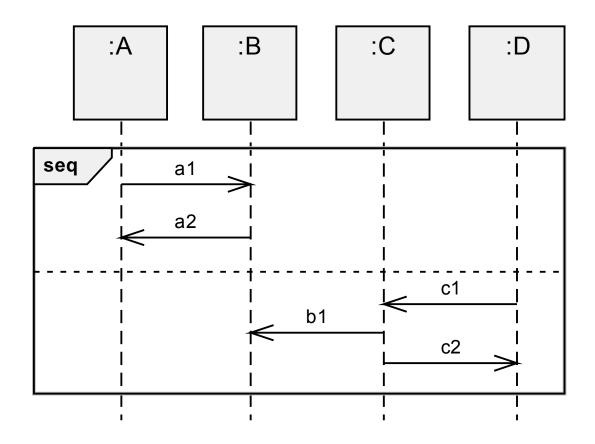
Verzweigungen u. Schleifen: break-Operator


- Ausnahme-Interaktionen
- Überwachungsbedingung steuert Durchlauf der Interaktionen
- Behandlung von Sonderfällen und Ausnahmen

Interaktionen, die im Falle des break ([a<1]) nicht ausgeführt werden



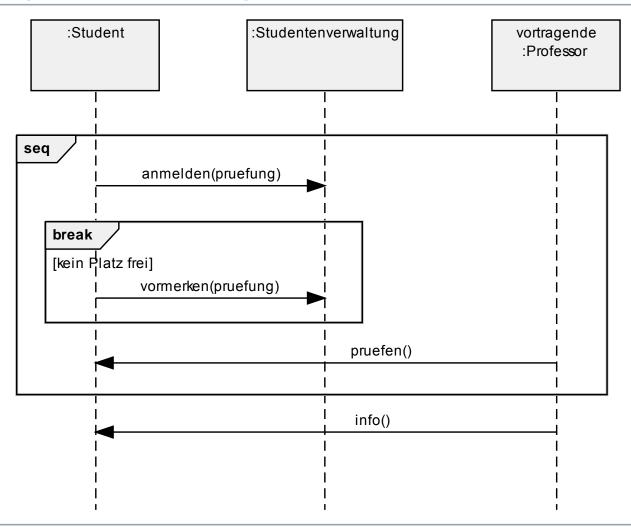
Break-Operator - Beispiel



Nebenläufigkeit u. Ordnung: seq-Operator

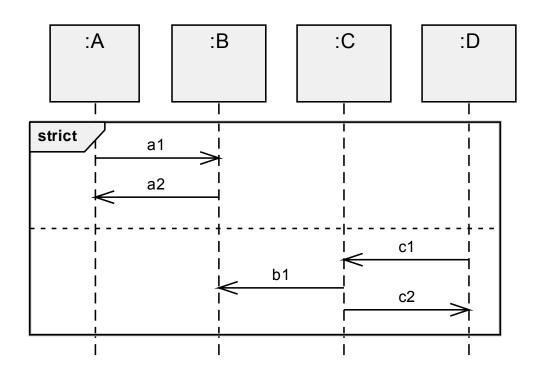
- Sequentielle Interaktion mit schwacher Ordnung (default!)
- mind. 1 Operand
- Reihenfolge der Ereigniseintritte:
 - Reihenfolge der Ereignisse pro Lebenslinie gilt über Operandengrenze hinaus (Reihenfolge der Operanden im Diagramm ist relevant)
 - Reihenfolge auf unterschiedlichen Lebenslinien von unterschiedlichen Operanden ist nicht signifikant
 - Reihenfolge auf unterschiedlichen Lebenslinien in einem Operanden ist nur signifikant, wenn hier ein Nachrichtenaustausch stattfindet

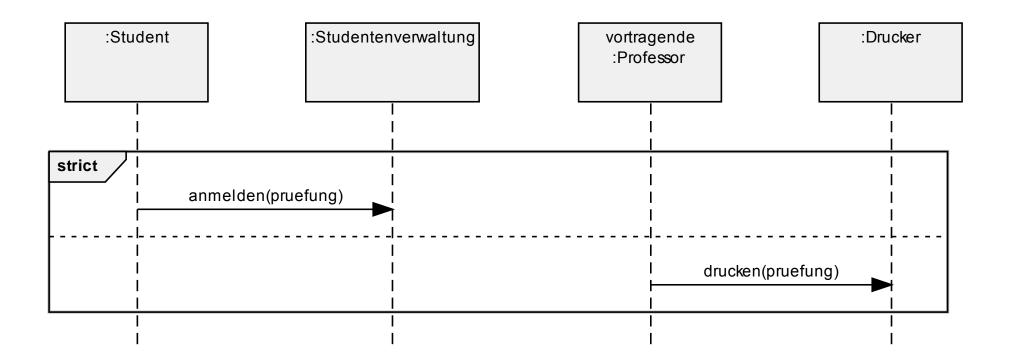
Nebenläufigkeit u. Ordnung: seq-Operator - Beispiel


Ereignisfolge 1: a1 \rightarrow a2 \rightarrow c1 \rightarrow b1 \rightarrow c2

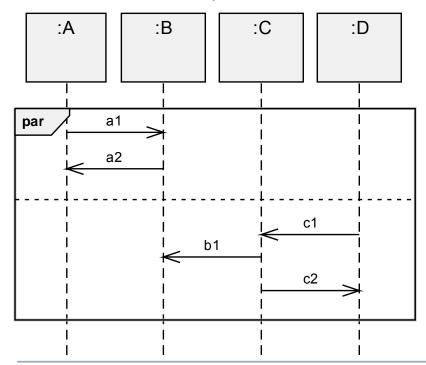
Ereignisfolge 2: $a1 \rightarrow c1 \rightarrow a2 \rightarrow b1 \rightarrow c2$

Ereignisfolge 3: $c1 \rightarrow a1 \rightarrow a2 \rightarrow b1 \rightarrow c2$


Nebenläufigkeit u. Ordnung: seq-Operator – Beispiel (2/2)


Nebenläufigkeit und Ordnung: strict-Operator

- Sequentielle Interaktion mit strenger Ordnung
- Reihenfolge auf unterschiedlichen Lebenslinien von unterschiedlichen Operanden ist signifikant


Ereignisfolge 1: a1 \rightarrow a2 \rightarrow c1 \rightarrow b1 \rightarrow c2

Strict-Operator - Beispiel

Nebenläufigkeit und Ordnung: par-Operator

- Nebenläufige Interaktionen
 - Lokale Reihenfolge pro Operand muss erhalten bleiben
 - Reihenfolge der Operanden im Diagramm ist irrelevant!
 - mind. 2 Operanden


```
Ereignisf. 1: a1 \rightarrow a2 \rightarrow c1 \rightarrow b1 \rightarrow c2

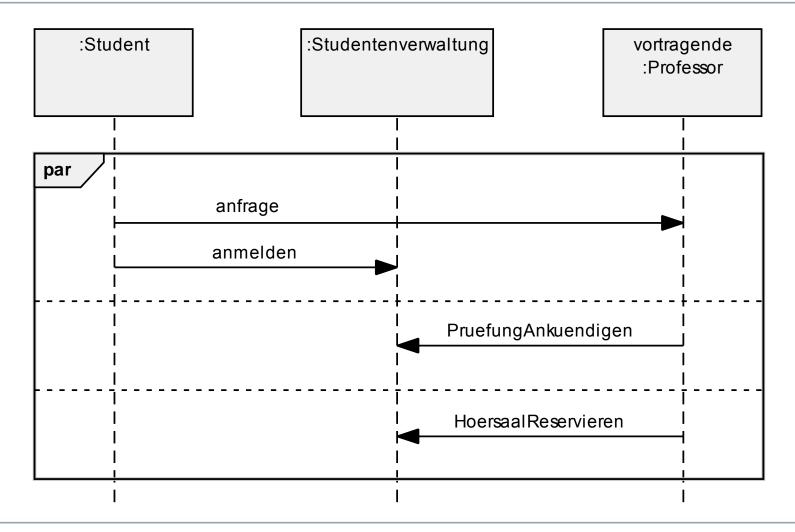
Ereignisf. 2: a1 \rightarrow c1 \rightarrow a2 \rightarrow b1 \rightarrow c2

Ereignisf. 3: a1 \rightarrow c1 \rightarrow b1 \rightarrow a2 \rightarrow c2

Ereignisf. 4: a1 \rightarrow c1 \rightarrow b1 \rightarrow c2 \rightarrow a2

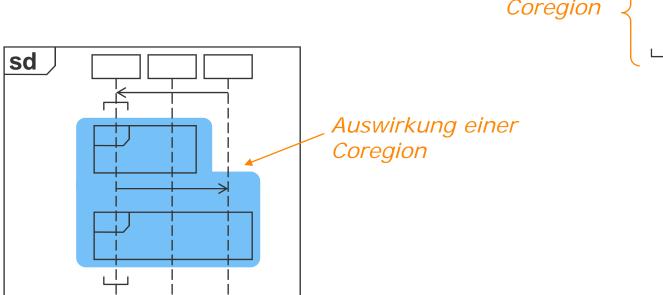
Ereignisf. 5: c1 \rightarrow a1 \rightarrow a2 \rightarrow b1 \rightarrow c2

Ereignisf. 6: c1 \rightarrow a1 \rightarrow b1 \rightarrow a2 \rightarrow c2

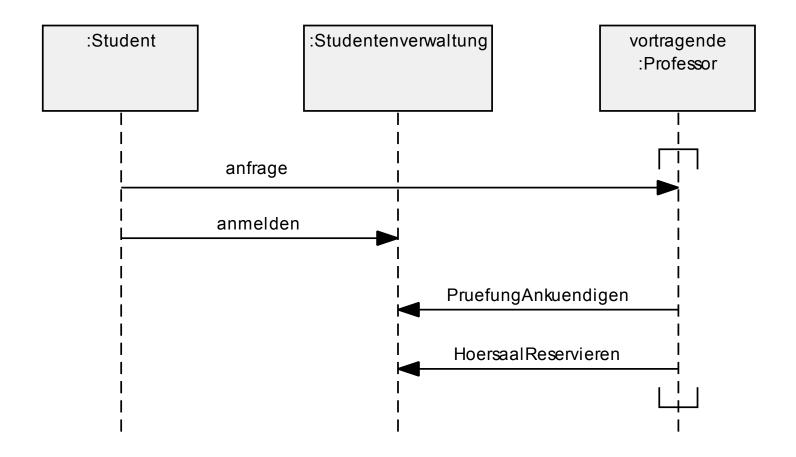

Ereignisf. 7: c1 \rightarrow a1 \rightarrow b1 \rightarrow c2 \rightarrow a2

Ereignisf. 8: c1 \rightarrow b1 \rightarrow a1 \rightarrow a2 \rightarrow c2

Ereignisf. 9: c1 \rightarrow b1 \rightarrow a1 \rightarrow c2 \rightarrow a2

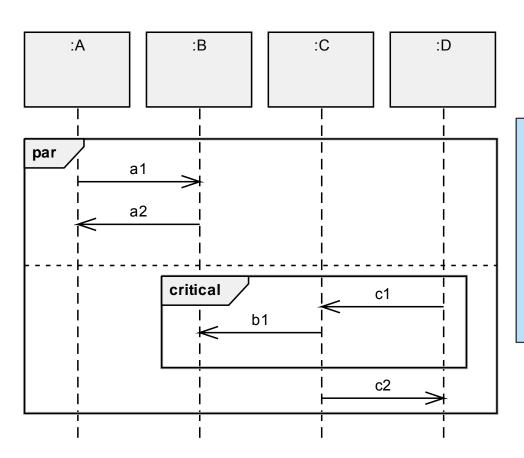

Ereignisf. 10: c1 \rightarrow b1 \rightarrow c2 \rightarrow a1 \rightarrow a2
```

Par-Operator - Beispiel

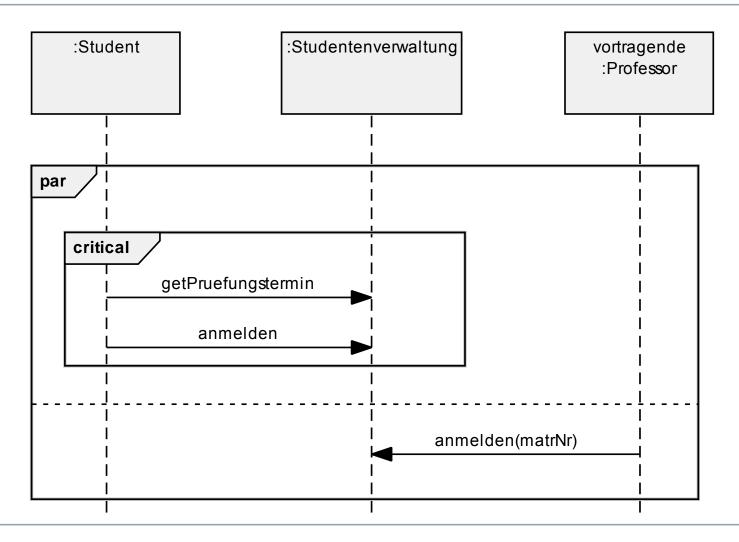


Nebenläufigkeit und Ordnung: Coregion

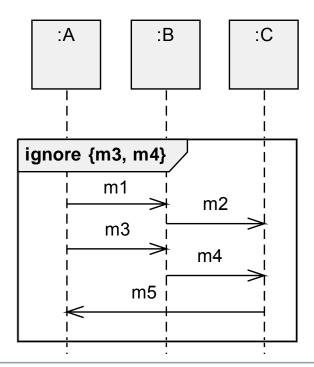
- Coregion: Darstellung von nebenläufigen Abläufen auf EINER Lebenslinie
- Reihenfolge der Ereigniseintritte innerhalb von Coregions ist auf keine Weise beschränkt ("Aufhebung der Zeitdimension")
- Coregion kann weitere kombinierte Fragmente beinhalten – kombinierte Fragmente können als Ganzes in bel. Reihenfolge ausgeführt werden



Coregion – Beispiel


Nebenläufigkeit und Ordnung: critical-Operator

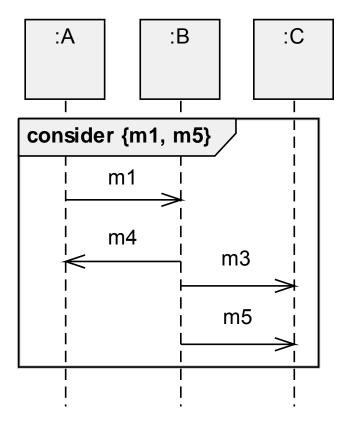
- Kritischer Bereich: atomarer (nicht unterbrechbarer) Interaktionsablauf
- Keine Beschränkung auf Interaktionen außerhalb des kritischen Bereichs

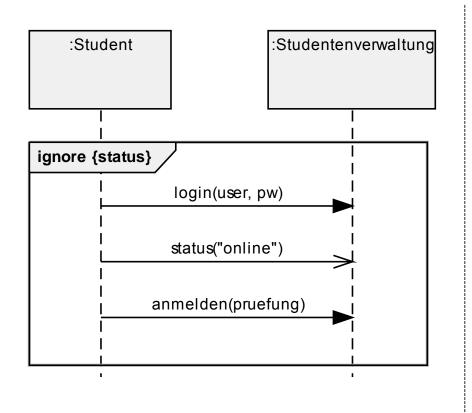

Ereignisf. 1:
$$a1 \rightarrow a2 \rightarrow c1 \rightarrow b1 \rightarrow c2$$

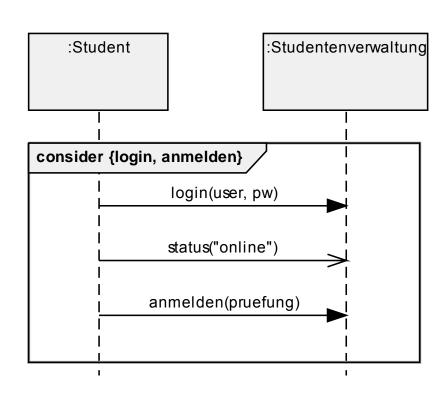
Ereignisf. 2: $a1 \rightarrow c1 \rightarrow b1 \rightarrow a2 \rightarrow c2$
Ereignisf. 3: $a1 \rightarrow c1 \rightarrow b1 \rightarrow c2 \rightarrow a2$
Ereignisf. 4: $c1 \rightarrow b1 \rightarrow a1 \rightarrow a2 \rightarrow c2$
Ereignisf. 5: $c1 \rightarrow b1 \rightarrow a1 \rightarrow c2 \rightarrow a2$
Ereignisf. 6: $c1 \rightarrow b1 \rightarrow c2 \rightarrow a1 \rightarrow a2$

Critical-Operator - Beispiel

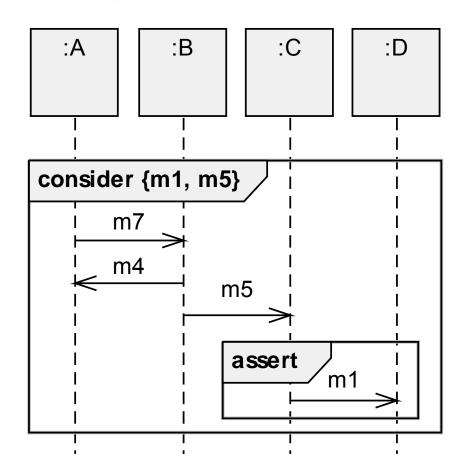
Filterungen u. Zusicherungen: ignore-Operator

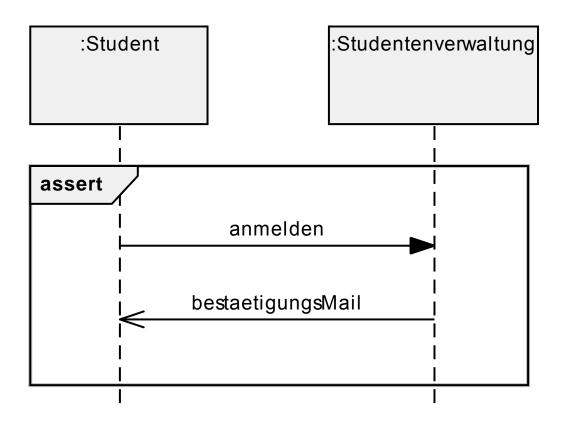

- Darstellung von irrelevanten Nachrichten
 - Modellierung von Nachrichten aus technischen Gründen oder wegen syntaktischer Vollständigkeit
 - Nachrichten, die zur Laufzeit auftreten können (z.B. keep-alive Signale)



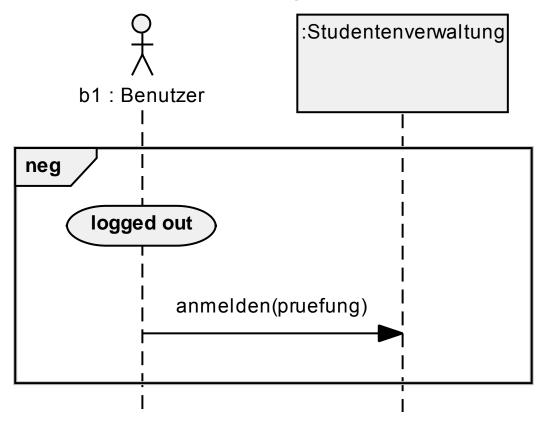

Filterungen u. Zusicherungen: consider-Operator

- Gegenstück von Ignore
- Spezifikation von besonders relevanten Nachrichten
- andere Nachrichten im Operanden werden automatisch als nicht relevant eingestuft


Consider-Operator - Beispiel


Filterungen u. Zusicherungen: assert-Operator

- Zugesicherte Interaktionen: Kennzeichnung der Interaktion als verpflichtend – Abweichungen, die im Diagramm nicht berücksichtigt sind, aber in der Realität auftreten, sind nicht zulässig
 - ⇒ Forderung von getreuer Abbildung in der Implementierung



Assert-Operator – Beispiel Prüfungsanmeldung

Filterungen und Zusicherungen: neg-Operator

 Ungültige Interaktionen: Es darf nicht sein, dass sich ein Benutzer, der "logged out" ist, zu einer Prüfung anmeldet

Basiselemente (1/3)

Name	Syntax	Beschreibung
Diagramm- rahmen	sd	Begrenzung des Diagramms, Angabe von Parametern
Lebenslinie	Rolle: Typ Akteur 1	Interaktionspartner
Ausführungs- spezifikation (direkt/indirekt)	Rolle1:Typ1 Rolle2:Typ2 direkt indirekt	Periode, in der ein Interaktionspartner ein Verhalten (direkt/indirekt) ausführt

Basiselemente (2/3)

Name	Syntax	Beschreibung
aktives Objekt		Objekt mit eigenem Kontrollfluss
Löschsymbol	X	Zeitpunkt zu dem ein Objekt aus seiner Rolle gelöscht wird
Kombiniertes Fragment	alt, opt, break, loop seq, par, strict, critical ignore, assert, consider, neg	Steuerung des Kontrollflusses

Basiselemente (3/3)

Name	Syntax	Beschreibung
Synchrone Kommunikation	<	Nachricht Antwort
Asynchrone Kommunikation	>	Nachricht
Gefundene/ Verlorene Nachricht	lost > found >	spezielle Nachrichten von oder an unbekannte Interaktionspartner (z.B. Modellierung von Fehlerfällen in der Kommunikation)

Zusammenfassung

- Sie haben diese Lektion verstanden, wenn Sie wissen ...
- wofür Interaktionsdiagramme verwendet werden.
- welche Arten von Interaktionsdiagrammen es gibt.
- aus welchen Komponenten ein Sequenzdiagramm besteht.
- was mit einer Lebenslinie gemeint ist.
- wie die Reihenfolge von Ereigniseintritten im Sequenzdiagramm definiert ist.
- was der Unterschied zwischen direkter und indirekter Ausführung, sowie aktiven und passiven Objekten ist.
- welche Operatoren im Sequenzdiagramm zur Verfügung stehen.
- wie Nebenläufigkeit ausgedrückt werden kann.

